Wenyuan Wang

■ ww462@scarletmail.rutgers.edu

RESEARCH INTERESTS

Multimodal Learning, Computer Vision, Reinforcement learning, Trustworthy AI

EDUCATION

Wuhan University

B.S. in Electronic Information Engineering

Sep 2020 - June 2024

- GPA: 3.60(87.2)/4.0 (40%)
- Third Class Scholarship of School of Electronic Information 2021

PUBLICATIONS

o Generalizable Geometric Image Caption Synthesis.

Wenyuan Wang*, Yue Xin*, Rui Pan*, BingXu Meng*, Renjie Pi, Tong Zhang Submitted to NeurIPS Datasets and Benchmarks Track(5443)

o Probabilistic Residual User Clustering.

Wenyuan Wang, Yusong Zhao, Zihao Xu, Hengyi Wang, Shreya Venugopal, Desmond Lobo, Chengzhi Mao, Qi Xu, Zhigang Hua, Yan Xie, Bo Long, Shuang Yang, Hao Wang. *IJCAI2025 workshop Causal Learning for Recommendation Systems / Submitted to TMLR*

• Multimodal Needle in a Haystack: Benchmarking Long-Context Capability of Multimodal Large Language Models.

Hengyi Wang, Haizhou Shi, Shiwei Tan, Weiyi Qin, **Wenyuan Wang**, Tunyu Zhang, Akshay Nambi, Tanuja Ganu, Hao Wang.

NAACL 2025 Main

o Continual Learning of Large Language Models: A Comprehensive Survey.

Haizhou Shi, Zihao Xu, Hengyi Wang, Weiyi Qin, **Wenyuan Wang**, Yibin Wang, Zifeng Wang, Sayna Ebrahimi, Hao Wang.

ACM Computing Surveys

O Multi-tailed vision transformer for efficient inference.

Yunke Wang, Bo Du, Wenyuan Wang, Chang Xu.

Neural Networks, 2024, 174: 106235.

RESEARCH EXPERIENCE

Geo-Image-Textualization

Mar 2025 - May 2025

Research Assistant, Department of Computer Science, UIUC

Advisor: Prof. Tong Zhang

- Proposed Geo-Image-Textualization, a reinforcement learning-based framework for generating semantically aligned geometry image-caption pairs.
- Constructed GeoReasoning-10K, the first dataset with full modality equivalence for geometric reasoning, enhancing MLLMs' cross-modal alignment.
- Demonstrated significant improvements in Qwen-2.5-vl performance across geometry, arithmetic, algebraic, and numeric domains.

Interpretability of MLLM

May 2024 - Sep 2024

Research Assistant, Department of Computer Science, Rutgers

Advisor: Prof. Hao Wang

- o Identified strong correlations between visual inputs and token-level outputs in the LLaVA.
- o Enhanced the interpretability of LlaVA by uncovering the underlying attention mechanisms.

• Proposed an adaptive pruning technique to selectively prune hierarchical attention layers, preserving high-attention heads to improve both accuracy and efficiency.

Probabilistic Residual User Clustering.

Jul 2024 - Jan 2025

Research Assistant, Department of Computer Science, Rutgers

Advisor: Prof. Hao Wang

- Proposed PRUC, a causal Bayesian framework that clusters users and models residuals between predicted and true ratings to enhance recommendation accuracy.
- o Introduced a plug-and-play architecture compatible with diverse deep learning recommenders, improving performance in cold-start and domain-shift settings.
- Demonstrated significant improvement across benchmark datasets while uncovering meaningful user clusters via latent variable inference.

$\label{lem:multimodal} \textbf{Multimodal Needle Benchmark \& The survey for Continual learning of LLM}$

Mar 2024 - *May* 2024

Research Assistant, Department of Computer Science, Rutgers

Advisor: Prof. Hao Wang

- o Evaluated performance of InstructBLIP vicuna/t5 on custom-developed benchmark.
- o Researched advancements in continual learning for multimodal large language models.
- o Contributed to comprehensive survey on multimodal LLM continual learning

Dynamic scene graph generation

Jun 2023- Sep 2023

Research Assistant, Shenzhen University

Advisor: Prof. Runhao Zeng, Chuang Gan

- Based on the insights that class, box and relationship triples can help to forecast each other mutually, deployed the Multimodal-LLM following the MiniGPT4, and fine-tuned it on AG datasets to generate scene graph.
- o Fine-tuned class, box and add these models in MiniGPT4's base model by transfer learning to enhance relationship predictions.

Multi-Tailed vision Transformers

Feb 2023- Apr 2023

Research Assistant, Department of Computer Science, University of Sydney

Advisor: Prof. Chang Xu

- Designed multiple tails to generate visual sequences of different lengths for the following Transformer encoder
- Employed a tail predictor to determine which tail produces the most accurate prediction for the image.
- Achieved a significant reduction in FLOPs with no accuracy degradation and outperformed other compared methods in both accuracy and FLOPs. Confirmed that our backbone is a general backbone that can be used in downstream tasks, such as object detection

Dynamic Confidence Calibration Based on Adaptive Temperature Adjustment

Dec 2022- Jan 2023

Research Assistant, Department of Computer Science, University of Sydney

Advisor: Prof. Chang Xu

- Proposed a dynamic neural network allocate computing resources of the neural network according to the difficulty of the sample.
- Used adaptive temperature adjustment for network confidence calibration to more accurately verify the difficulty of samples in the dynamic neural network.

WORK EXPERIENCE

Visual alignment in industrial Settings

Aug 2023 - Jan 2024

Intern, Siemens,

Shanghai, China

- o Simulated the AGV to detect the cargo in Gazebo based on ROS2.
- O Designed a visual algorithm that calculated the pose and position of cargo by determining its frontal area.

SKILLS

- o **Programming:** Proficient in Python, C++ and C
- O Development Tools & Platforms: Experienced with ROS, Linux, and embedded systems